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Abstract. Developer-supplied data structure specifications are impor-
tant to shape analyses, as they tell the analysis what information should
be tracked in order to obtain the desired shape invariants. We observe
that data structure checking code (e.g., used in testing or dynamic anal-
ysis) provides shape information that can also be used in static analysis.
In this paper, we propose a lightweight, automatic shape analysis based
on these developer-supplied structural invariant checkers. In particular,
we set up a parametric abstract domain, which is instantiated with such
checker specifications to summarize memory regions using both notions
of complete and partial checker evaluations. The analysis then automati-
cally derives a strategy for canonicalizing or weakening shape invariants.

1 Introduction

Pointer manipulation is fundamental in almost all software developed in impera-
tive programming languages today. For this reason, verifying properties of inter-
est to the developer or checking the pre-conditions for certain complex program
transformations (e.g., refactorings) often requires detailed aliasing and structural
information. Shape analyses are unique in that they can provide this detailed
must-alias and shape information that is useful for many higher-level analyses
(e.g., typestate or resource usage analyses, race detection for concurrent pro-
grams). Unfortunately, because of precision requirements, shape analyses have
been generally prohibitively expensive to use in practice.

The design of our shape analysis is guided by the desire to keep the abstrac-
tion close to informal developer reasoning and to maintain a reasonable level of
interaction with the user in order to avoid excessive case analysis. In this pa-
per, we propose a shape analysis guided by the developer through programmer-
supplied data structure invariants. The novel aspect of our proposal is that these
specifications are given as checking code, that is, code that could be used to verify
instances dynamically. In this paper, we make the following contributions:

* This research was supported in part by the National Science Foundation under grants
CCR-0326577, CCF-0524784, and CNS-0509544; and an NSF Graduate Research
Fellowship. Any opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.
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— We observe that invariant checking code can help guide a shape analysis and
provides a familiar mechanism for the developer to supply information to
the analysis tool. Intuitively, checkers can be viewed as programmer-supplied
summaries of heap regions bundled with a usage pattern for such regions.

— We develop a shape analysis based on programmer-supplied invariant check-
ers (utilizing the framework of separation logic [Rey02]).

— We introduce a notion of partial checker runs (using — ) as part of the
abstraction in order to generalize programmer-supplied summaries when the
data structure invariant holds only partially (Sect. 3).

— We notice that the iteration history of the analysis can be used to guide the
weakening of shape invariants, which perhaps could apply to other shape
analyses. We develop an automatic widening strategy for our abstraction
based on this observation (Sect. 4.2).

In this paper, we consider structural invariants, that is, invariants concerning the
pointer structure (e.g., acyclic list, cyclic list, tree) but not data properties (e.g.,
orderedness). In the next section, we motivate the design of our shape analysis
and highlight the challenges through an example.

2 Overview

In Fig. 1, we present an example analysis that checks a skip list [Pug90] rebal-
ancing operation to verify that it preserves the skip list structure. At the top,
we show the structure of a two-level skip list. In such a skip list, each node is
either level 1 or level 0. All nodes are linked together with the next field (n),
while the level 1 nodes are additionally linked with the skip field (s). A level 0
node has its s field set to null. In the middle left, we give the C type declaration
of a SkipNode and in the middle right, we give a checking routine skipi that
when viewed as C code (assumed type safe) either diverges if there is a cycle
in the reachable nodes, returns false, or returns true when the nodes reachable
from the argument 1 are arranged in a skip list structure. The skipO function
is a helper function for checking a segment of level 0 nodes. Intuitively, skip1
and skipO simply give the inductive structure of skip lists.

In the bottom section of Fig. 1, we present an analysis of the rebalancing
routine (rebalance). The assert at the top ensures that skip1(1) holds (i.e.,
1 is a skip list), and the assert at the bottom checks that 1 is again a skip
list on return. We have made explicit these pre- and post-conditions here, but
we can imagine a system that connects the checker to the type and verifies
that the structure invariants are preserved at function or module boundaries. In
the figure, we show the abstract memory state of the analysis at a number of
program points using a graphical notation, which for now, we can consider as
informal sketches a developer might draw to check the code by hand. For the
program points inside the loop there are two memory states shown: one for the
first iteration (left) and one for the fixed point (right).

A programmer-defined checker can be used in static analysis by viewing the
memory addresses it would dereference during a successful execution as describ-
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level 1 i = ) 2 o HE—:
s ¢ s ¢ s ¢
level 0 —7 - - _//
typedef bool skipl(SkipNode* 1) {
struct SkipNode { if (1 == null) return true;
int d; else return skip1(1->s) &&
struct SkipNodex* s; skip0(1->n, 1->s);
struct SkipNode* n;| }
} bool skipO(SkipNode* 1, SkipNodex e) {
SkipNode; if (1 == e) return true;
else return 1 != null & 1->s == null &&
skip0(1->n, e);
}

void rebalance(SkipNodex 1) {
SkipNode *p, *c;
assert (1 !'= null && skip1(1));

o= ’

p=1; // previous level 1 node
2 ¢ = 1->n; // cursor
3 1->s = null;

while (¢ != null) {

SZf) s 50
[LP n < skip0(e) : skipll ‘ %1! n . skip0(-) ! skip0(e) : skipl

if (c should be a level 1 node) {
6 p—>s = c; // set the skip pointer of the previous level 1 node

~

<

7 p = p—>s;
8 c->s = null; ¢ = c->n;
s E s Zo s s Q
9 T n 5 n :C skip0(e) : skipl :1 skipl: n fskipO -) :P n :C skip0(e) : skipl
else {
10 c->s = null; ¢ = c->n;
s Z(Q s Zo s 50 « 50
11 o n n :C skip0(e) : skipl :1 skipl:p n : skipO(-) : n :c skip0(e) : skipl

}
}

12 assert (1 != null && skip1(1));

}

First Iteration At Fixed Point

Fig. 1. Analysis of a skip list rebalancing
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ing a class of memory regions arranged according to particular constraints. We
build an abstraction around this summarization mechanism. To name heap ob-
jects, the analysis introduces symbolic values (i.e., fresh existential variables).
To distinguish them from program variables, we use lowercase Greek letters
(a, B,7,8,e,m,p,...). A graph node denotes a value (e.g., a memory address)
and, when necessary, is labeled by a symbolic value; the @ nodes represent null.
We write a program variable (e.g., 1) below a node to indicate that the value of
that variable is that node. Each edge corresponds to a memory region. A thin
edge denotes a points-to relationship, that is, a memory cell whose address is
the source node and whose value is the destination node (e.g., on line 5 in the
left graph, the edge labeled by n says that 1->n points to c¢). A thick edge
summarizes a memory region, i.e., some number of points-to edges. Thick edges,
or checker edges, are labeled by a checker instantiation that describes the struc-
ture of the summarized region. There are two kinds of checker edges: complete
checker edges, which have only a source node, and partial checker edges, which
have both a source and a target node. Complete checker edges indicate a memory
region that satisfies a particular checker (e.g., on line 1, the complete checker
edge labeled skipl says there is a memory region from 1 that satisfies checker
skipl). Partial checker edges are generalization that we introduce in our ab-
straction to describe memory states at intermediate program points, which we
discuss further in Sect. 3. An important point is that two distinct edges in the
graph denote disjoint memory regions.

To reflect memory updates in the graph, we simply modify the appropriate
points-to edges (performing strong updates). For example, consider the transi-
tion from program point 5 to point 9 and the updates on lines 6 and 7. For the
updates on line 8, observe that we do not have nodes for c->s or c->n in the
graph at program point 5. However, we have that from c, an instance of skip0O
holds, which can be unfolded to materialize points-to edges for c->s and c->n
(that is, conceptually unfolding one step of its computation). The update can
then be reflected after unfolding.

As exemplified here, we want the work performed by our shape analysis
to be close to the informal, on-paper verification that might be done by the
developer. The abstractions used to summarize memory regions is developer-
guided through the checker specifications. While it may be reasonable to build
in generic summarization strategies for common structures, like lists and trees
(cf., [DOY06,MNCLO06)), it seems unlikely such strategies will suffice for other
structures, like the skip lists in this example. Traversal code for checking seems
like a useful and intuitive specification mechanism, as such code could be used
in testing or dynamic analysis (cf., [SRW02]).

From this example, we make some observations that guide the design of our
analysis and highlight the challenges. First, in our diagrams, we have implicitly
assumed a disjointness property between the regions described by edges (to per-
form strong updates on points-to edges). This assumption is made explicit by
utilizing separation logic to formalize these diagrams (see Sect. 3). This choice
also imposes restrictions on the checkers. That is, all conjunctions are separating



Shape Analysis with Structural Invariant Checkers 5

conjunctions; in terms of dynamic checking, a compilation of skipl must check
that each address is dereferenced at most once during the traversal. Second, as
with many data structure operations, the rebalance routine requires a traversal
using a cursor (e.g., c). To check properties of such operations, we are often
required to track information in detail locally around the cursor, but we may be
able to summarize the rest rather coarsely. This summarization cannot be only
for the suffix (yet to be visited by the cursor) but must also be for the prefix
(already visited by the cursor) (see Sect. 3). Third, similar to other shape anal-
yses, a central challenge is to fold the graphs sufficiently in order to find a fixed
point (and to be efficient) while retaining enough precision. With arbitrary data
structure specifications, it becomes particularly difficult. The key observation we
make is that previous iterates are generally more abstract and can be used to
guide the folding process (see Sect. 4.2).

3 Memory Abstraction

We describe our analysis within the framework of abstract interpretation [CC77].
Our analysis state is composed of an abstract memory state (in the form of
a shape graph) and a pure state to track disequalities (the non-points-to con-
straints). We describe the memory state in a manner based largely on separation
logic, so we use a notation that is borrowed from there.

memories M ::= paf — r | My % My | emp | a.c(B) | a1.¢(B) *— az.c(3)
r-values r s=alnul]---

symbolic values «,3,7,d,&,m,p,...

field names f

checker names ¢

A memory state M includes the points-to relation (Sef — r), the separating
conjunction (M; % Ms), and the empty memory state (emp) from separation
logic, which together can describe a set of possible memories that have a finite
number of points-to relationships. The separating conjunction M; *x My de-
scribes a memory that can be divided into two disjoint regions (i.e., with disjoint
domains) described by M; and Ms. A field offset expression Saf corresponds
to the base address (§ plus the offset of field f (i.e., &(b.£) in C). For sim-
plicity, we assume that all pointers occur as fields in a struct. R-values r are
symbolic expressions representing the contents of memory cells (whose precise
form is unimportant but does include null). Memory regions are summarized
with applications of user-supplied checkers. We write a.c(f) to mean checker
¢ applied to o and 8 holds (i.e., ¢ succeeds when applied to « and ). For
example, a.skipl() says that the skipl checker is successful when applied to «.
We use this object-oriented style notation to distinguish the main traversal ar-
gument « from any additional parameters (. These additional parameters may
be used to specify additional constraints (as in the skipO checker in Fig. 1), but
we do not traverse from them. We also introduce a notion of a partial checker
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a0 - o
(:)—>f 0

a@f +— null

a.c(f)

ar.c(B) % az.c(B)
<(8)

Fig. 2. Correspondence between formulas and edges

run ai.c(f) *— ag.c(B) that describes a memory region summarized by a seg-
ment from a; to as, which will be described further in the subsections below.
Visually, we regard a memory state as a directed graph. The edges correspond
to formulas as shown in Fig. 2.3 Each edge in a graph is considered separately
conjoined (i.e., each edge corresponds to a disjoint region of memory).

Inductive Structure Checkers. The abstract domain provides generic sup-
port for inductive structures through wuser-specified checkers. Observe that a
dynamic run of a checker, such as skipl (in Fig. 1), visits a region of memory
starting from some root pointer, and furthermore, a successful, terminating run
of a checker indicates how the user intends to access that region of memory. In
the context of our analysis, a checker gives a corresponding inductively-defined
predicate in separation logic and a successful, terminating run of the checker
bears witness to a derivation of that predicate.

The definition of a checker ¢, with formals 7 and p, consists of a finite
disjunction of rules. A rule is the conjunction of a separating conjunction of a
series of points-to relations and checker applications M and a pure, first-order
predicate P, written (M ; P).

checker definitions m.c(p) = (My; Pi)V---V{(M,;P,)

Free variables in the rules are considered as existential variables bound at the
definition. Because we view checkers as executable code, the kinds of inductive
predicates are restricted. More precisely, we have the following restrictions on
the M;’s: (1) they do not contain partial checker applications (i.e., *—) and (2)
the points-to edges correspond to finite access paths from 7. In other words,
each M; can only correspond to a memory region reachable from 7. A checker
cannot, for example, posit the existence of some pointer that points to .

Each rule specifies one way to prove that a structure satisfies the checker
definition, by checking that the corresponding first-order predicate holds and
that the store can be separated into a series of stores, which respectively allow
proving each of the separating conjuncts. Base cases are rules with no checker
applications.

3 For presentation, we show the most common kinds of edges. In the implementation,
we support field offsets in most places to handle, for example, pointer to fields.
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Ezample 1 (A binary tree checker). A binary tree with fields It and rt can be
described by a checker with two rules:

m.tree() := (emp ;7w = null) V ((ralt — v) % (r@rt — §) * v.tree() * d.tree() ; m # null)

Ezample 2 (A skip list checker). The “C-like” checkers for the two-level skip list
in Fig. 1 would be translated to the following:

m.skipl() := (emp ;7 = null)

V {(was — ) * (r@n — ¢§) * v.skipl() * d.skip0(7y) ; 7w # null)
m.skip0(p) := (emp ;7 = p)

V {(m@s — null) * (m@n — ) * 7.skip0(p) ; ™ # p A 7 % null)

Segments and Partial Checker Runs. In the above, we have built some
intuition on how user-specified checkers can be utilized to give precise summaries
of memory regions. Unfortunately, the inductive predicates obtained from typical
checkers, such as tree or skipl, are usually not general enough to capture the
invariants of interest at all program points. To see this, consider the invariant at
fixed point on line 5 (i.e., the loop invariant) in the skip list example (Fig. 1).
Here, we must track some information in detail around a cursor (e.g., p and
c), while we need to summarize both the already explored prefix before the
cursor and the yet to be explored suffix after the cursor. Such a situation is
typical when analyzing a traversal algorithm. The suffix can be summarized by
a checker application d.skipO(e) (i.e., the skip0 edge from c), but unfortunately,
the prefix segment (i.e., the region between 1 and p) cannot.

Rather than require more general checker specifications sufficient to capture
these intermediate invariants, we introduce a generic mechanism for summariz-
ing prefix segments. We make the observation that they are captured by partial
checker runs. In terms of inductively-defined predicates, we want to consider par-
tial derivations, that is, derivations with a hole in a subtree. This concept is in-
ternalized in the logic with the separating implication. For example, the segment
from 1 to p on line 5 corresponds to the partial checker application a.skipl() *—
B.skipl(). Informally, a memory region satisfies a.skipl() x— (.skipl() if and
only if for any disjoint region that satisfies 8.skipl() (i.e., is a skip list from ),
then conjoining that region satisfies a.skipl() (i.e., makes a complete skip list
from «). This statement entails that § is reachable from «. Our notation for
separating implication is reversed compared to the traditional notation —* to
mirror more closely the graphical diagrams. Our use of separating implication is
restricted to the form where the premise and conclusion are checker applications
that differ only in the unfolding argument because these are the only partial
checker edges our analysis generates.

Semantics of Shape Graphs. For completeness in presentation, we give the
semantics of abstract memory states with checkers (i.e., graphs) in terms of sets
of concrete stores, which follows mostly from separation logic. In Sect. 4, we
describe the shape analysis algorithm that utilizes this memory abstraction.
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We write u,v € Val for concrete values and make no distinction between
addresses and values, and we write vaf to mean the address v + offset(f) (i.e.,
the base address v plus the field offset f). A concrete store o : Val — Val
maps addresses to values. We write o1 * --- % o, for the store with disjoint
sub-stores o1, ...,0, (i.e., they have disjoint domains). For the empty store, we
write [], and for the store with one cell with address v and containing value
u, we write [v — u]. A valuation v is a substitution with concrete values for
symbolic values (written [¢//d]). Finally, we write v M for applying the valuation
vto M.

We say a concrete store o satisfies an abstract memory M if there exists
a valuation v such that o = vM where the relation |= is defined as the least
relation satisfying the following rules:

(] = emp (always)
[vaf — u] E [vaf — u] (always)
0'1*0'2':M1*M2 if 01|:M1and02|:M2

o Ewv.e)

if there exists a rule (M ; P) in the definition of 7.c() and there exist
values @ such that o satisfies the pure formula [v/7][@/&]P and
o | [v/7][@/&)|M where & are the free variables of the rule.
o Ev.ce() x=v'.¢c()

if for all ¢’ (disjoint from o), if o/ = v'.¢(), then o * ¢’ = v.c().

For presentation, we write the semantics with checkers with no additional param-
eters. They can be extended to checkers with parameters without any difficulty.

4 Analysis Algorithm

In this section, we describe our shape analysis algorithm. Like many other shape
analyses, we have a notion of materialization, which reifies memory regions in
order to track updates, as well as blurring or weakening, which (re-)summarizes
certain memory regions in order to obtain a terminating analysis. For us, we
materialize by unfolding checker edges (Sect. 4.1) and weaken by folding memory
regions back into checker edges (Sect. 4.2). Like others, we materialize as needed
to reflect updates and dereferences, but instead of weakening eagerly, we delay
weakening in order to use history information to guide the process.

Our shape analysis is a standard forward analysis that computes an abstract
state at each program point. In addition to the memory state (as described in
Sect. 3), the analysis also keeps track of a number of pure constraints P (pointer
equalities and disequalities). Furthermore, we maintain some disjunction, so our
analysis state has essentially the following form: (Mj; P1) V (My; Pa) V-V
(M, ; P,) (for unfoldings and acyclic paths where needed). Additionally, we
keep the values of the program variables (i.e., the stack frame) in an abstract
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environment F that maps program variables to symbolic values that denote
their contents.*

4.1 Abstract Transition and Checker Unfolding

Because each edge in the graph denotes a separate memory region, the atomic
operations (i.e., mutation, allocation, and deallocation) are straightforward and
only affect graphs locally. As alluded to in Sect. 2, mutation reduces to the
flipping of an edge when each memory cell accessed in the statement exists in
the graph as a points-to edge. This strong update is sound because of separation
(that is, because each edge is a disjoint region).

When there is no points-to edge corresponding to a dereferenced location
because it is summarized as part of a checker edge, we first materialize points-to
edges by unfolding the checker definition (i.e., conceptually unfolding one-step
of the checker run). We unfold only as needed to expose the points-to edge that
corresponds to the dereferenced location. Unfolding generates one graph per
checker rule, obtained by replacing the checker edge with the points-to edges and
the recursive checker applications specified by the rule; the pure constraints in the
rule are also added to pure state. In case we derive a contradiction (in the pure
constraints), then those unfolded elements are dropped. Though, unfolding may
generate a disjunction of several graphs. A fundamental property of unfolding
is that the join of the concretizations of the resulting graphs is equal to the
concretization of the initial graph.

Ezample 3 (Unfolding a skip list). We exhibit an unfolding of the skipl checker
from Example 2. The addition of the pure constraints are shown explicitly.
P unfold P Ao =null P A a # null

O | V| O O
skipl emp n skip0(7) skipl

4.2 History-Guided Folding

We need a strategy to identify sub-graphs that should be folded into complete
or partial checker edges. What kinds of sub-graphs can be summarized without
losing too much precision is highly dependent on the structures in question and
the code being analyzed. To see this, consider the fixed-point graph at program
point 5 in this skip list example (Fig. 1). One could imagine folding the points-to
edges corresponding to p->n and p->s into one summary region from p to c (i.e.,
eliminating the node labeled ), but it is necessary to retain the information that
p and c are “separated” by at least one n field. Keeping node v expresses this
fact. Rather than using a canonicalization operation that looks only at one graph
to identify the sub-graphs that should be summarized, our weakening strategy is
based on the observation that previous iterates at loop join points can be utilized

4 In implementation, we instead include the stack frame in M to enable handling
address of local variable expressions (as in C) in a smooth manner.
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to guide the folding process. In this subsection, we define the approximation test
and widening operations (standard operations in abstract interpretation-based
static analysis) over graphs as a simultaneous traversal over the input graphs.

Approximation Test. The approximation test on memory states M; T M,
takes two graphs as input and tries to establish that the concretization of M;
is contained in the concretization of My (i.e., My = My). Static analyses rely
on the approximation test in order to ensure the termination of fixed point
computation. We also utilize it to collapse extraneous disjuncts in the analysis
state and most importantly, as a sub-routine in the widening operation.

Roughly speaking, our approximation test checks that graph M; is equiva-
lent to graph My up to unfolding of M, . That is, the basic idea is to determine
whether M; C Ms by reducing to stronger statements either by matching edges
on both sides or by unfolding Ms. To check this relation, we need a correspon-
dence between nodes of M; and nodes of M,. This correspondence is given by
a mapping @ from nodes of M5 to those of M. The condition that @ is such a
function ensures any aliasing expressed in M, is also reflected in M; . If at any
point, this condition on @ is violated, then the test fails.

Initialization. The mapping @ plays an essential role in the algorithm itself since
it gives the points from where we should compare the graphs. It is initialized
using the environment and then extended as the input graphs are traversed. The
natural starting points are the nodes that correspond to the program variables
(i.e., the initial mapping @9 = {E2(x) - E1(z) | € Var}).

Traversal. After initialization, we decide the approximation relation by travers-
ing the input graphs and attempting to match all edges. To check region dis-
jointness (i.e., linearity), when edges are matched, they are “consumed”. If the
algorithm gets stuck where not all edges are “consumed”, then the test fails. To
describe this traversal, we define the judgment M; C M,[®] that says, “M; is
approximated by Ms under ¢.”

In the following, we describe the rules that define M; T M>[®] by following
the example derivation shown in Fig. 3 (from goal to axiom). A complete listing
of the rules is given in Appendix A. In Fig. 3, the top line shows the initial goal
with a particular initialization for ¢. Each subsequent line shows a step in the
derivation (i.e., a rewriting step) that is obtained by applying the rule named
on the right. The highlighting of nodes and edges indicates where the rewriting
applies. We are able to prove that the left graph is approximated by the right
graph because we reach emp C emp[].

First, consider the application of the pointsto rule (line 3 to 4). When both
M; and M> have the same kind of edge from matched nodes, the approximation
relation obviously holds for those edges, so those edges can be consumed. Any
target nodes are then added to the mapping @ so that the traversal can continue
from those nodes. In this case, the s and n points-to edges match from the pair
a — §. With this matching, the mappings 3 — ¢,7 — ¢ are added. We highlight
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Fig. 3. Testing approximation by reducing to stronger statements

in @ with underlines the mappings that must match for each rule to apply. The
checker rule is the analogous matching rule for complete checker edges. We apply
this edge matching only to points-to edges and complete checker edges. Partial
checker edges are treated separately as described below.

Partial checker edges are handled by taking the separating implication inter-
pretation, which becomes critical here. We use the assume rule (as in the first
step in Fig. 3) to reduce the handling of partial checker edges in M5 to the han-
dling of complete checker edges (i.e., a “—x* right” in sequent calculus or “—x
introduction” in natural deduction). It extends the partial checker edge in My
to a complete checker edge by adding the corresponding completion to M;. A
key aspect of our algorithm is that this rule only applies when we have matched
both the source and target nodes of the partial checker edge, that is, we have
delineated in M; the region that corresponds to the partial checker edge in M, .

Now, consider the first application of unfold in Fig. 3 (line 2 to 3) where we
have a complete checker edge from « on the right, but we do not have an edge
from § on the left that can be immediately matched with it. In this case, we
unfold the complete checker edge. In general, the unfolding results in a disjunc-
tion of graphs (one for each rule, Sect. 4.1), so the overall approximation check
succeeds if the approximation check succeeds for any one of the unfolded graphs.
Note that on an unfolding, we must also remember the pure constraint P from
the rule, which must be conjoined to the pure state on the right when we check
the approximation relation on the pure constraints. In the second application
of unfold in Fig. 3 (line 5 to 6), the unfolding of 3.skip0(7y) is to emp because
we have that 3 = ~. This equality arises because they are both unified with ¢
(specifically, the pointsto steps added § — ¢ and v - € to ®).

Finally, we also have a rule for partial checkers in M; (i.e., a corresponding
“left” or “elimination” rule). Since it is not used in the above example, we present
it below schematically:
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M

fu .
E f2 c [@,agaal}
’ c
f1 . @ [ }
c D, —» ar,ah = af| (al fresh)
O_’ .c_’
c

apply

1M1

The rule is presented in the same way as in the example (i.e., with the goal on
top). Conceptually, this rule can be viewed as a kind of unfolding rule where
the complete checker edge in Ms is unfolded the necessary number of steps to
match the the partial checker edge in M.

Informally, the soundness of the approximation test can be argued from sep-
aration logic principles and from the fact that unfoldings have equivalent con-
cretizations. The approximation test is, however, incomplete (i.e., it may fail to
establish that an approximation relation between two graphs when their con-
cretizations are ordered by subset containment). Rather these rules have been
primarily designed to be effective in the way the approximation test is used by
the widening operation as described in the next subsection where we need to
determine if M is an unfolded version of M.

Widening. In this subsection, we present an upper bound operation M;V My
that we use as our widening operator at loop join points. The case of disjunctions
of graphs will be addressed below. At a high-level, the upper bound operation
works in a similar manner as compared to the approximation test. We maintain a
node pairing ¥ that relates the nodes of M; and M, . Because we are computing
an upper bound here, the pairing ¥ need not have the same restriction as in the
approximation test; it may be any relation on nodes in M; and Ms. From this
pairing, we simultaneously traverse the input graphs M; and Ms consuming
edges. However, for the upper bound operation, we also construct the upper
bound as we consume edges from the input graphs. Intuitively, the basic edge
matching rules will lay down the basic structure of the upper bound and guide
us to the regions of memory that need to be folded.

Initialization. The initialization of ¥ is the analogous to the approximation test
initialization: we pair the nodes that correspond to the values of each variable
from the environments (i.e., the initial pairing ¥y = {(E1(x), E2(z)) | « € Var}).

Traversal. To describe the upper bound computation, we define a set of rewriting
rules of the form ¥ § (MiVMy) @ M — W' ¢ (M{VvM,) ® M'. Initially, M is
emp, and then we try to rewrite until M| and M} are emp in which case M’
is the upper bound. A node in M corresponds to a pair (from M; and Ms).
Conceptually, we build M with nodes labeled with such pairs and then relabel
each distinct pair with a distinct symbolic value at the end.

Figure 4 shows an example sequence of rewritings to compute an upper
bound. A complete listing of the rewrite rules is given in Appendix B. We elide
the pairing ¥, as it can be read off from the nodes in the upper bound graph M
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previous current upper bound
Q s Q
1 %w) siplv n@-s&rﬂ@ @ @
0 ) 0 m-checker
: RO O,V Oz @ © O, @
m-checker

0
3D O TR 0 e @ O, O
w-aliases

5 0 s
) OO v 070 o Or) O, O,

Lp .
m-pointsto

0
S
emp v emp ® n) @E&

Fig. 4. An example of computing an upper bound. The inputs are the graphs
on the first iteration at program points 5 and 9 in the skip list example (Fig. 1).
The fixed-point graph at 5 is obtained by computing the upper bound of this
result and the upper bound of the first-iteration graphs at 5 and 11

®n°®n

<

(the rightmost graph). The highlighting of nodes in the upper bound graph indi-
cate the node pairings that are required to apply the rule, and the highlighting of
edges in the input graphs show which edges are consumed in the rewriting step.
Roughly speaking, the upper bound operation has two kinds of rules: matching
rules for when we have the same kind of edge on both sides (like in the approx-
imation test) and weakening rules where we have identified a memory region
to fold. We use the prefix m- for the matching rules and w- for the weakening
rules.

Line 1 shows the state after initialization: we have nodes in upper bound
graph for the program variables. The first two steps (applying rule m-checker)
match complete checker edges (first from (3, () and then from (v, 7n)). Note that
the second application is enabled by the first where we add the pair (v, 7). Extra
parameters are essentially implicit target nodes.

The core of the upper bound
operation are three weakening O [ O;PIFO ? Yes, always.
rules where we fold memory re- . ! 7
gions. Th-e next rule apphcatlon CE#O C O;p?O?Yes, see Fig. 3.
w-aliases is such a weakening step 1 P 1 P
(line 3 to 4). In this case, a node
on one side is paired with two nodes on the other ({«a,d) and («,¢e)). This situ-
ation arises where on one side, we have must-alias information, while the other
side does not (1 and p are aliased on the left but not on the right). In this
case, we want to weaken both sides to a partial checker edge. To see that this is
indeed an upper bound for these regions, consider the diagram in the inset. As
shown on the first line, aliases can always be weakened to a partial checker edge
(intuitively, from a zero-step segment to a zero-or-more step segment). On the
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second line, we need to check that a skipl checker edge is indeed weaker than
the region between § and e. This check is done using the approximation test
described in the previous subsection. The check we need to perform here is the
example shown in Fig. 3. Observe that we utilize the edge matching rules that
populates ¥ to delineate the region to be folded (e.g., the region between § and
¢ in the right graph). For the w-aliases rule, we do not specify here how the
checker ¢ is determined, but in practice, we can limit the checkers that need to
be tried by, for example, tracking the type of the node (or looking at the fields
used in outgoing points-to edges).

There are two other weakening rules w-partial and w-checker that are not
used in the above example. Rule w-partial applies when we identify that an
(unfolded) memory region on one side corresponds to a partial checker edge on
the other. In this case, we weaken to the partial checker edge if we can show the
partial checker edge is weaker than the memory region. Rule w-partial is shown
below schematically:

f1
Ml*ng*@f/\;%)_’@M*@ o
¢ w-partia
M, vV My @M*

_ @)
if % C @'c>@ [v—-7,6-6]

Observe that we find out that the region in the right graph must be folded
because the corresponding region in the left graph is folded (and also indicates
which checker to use). Rule w-checker is the analogous rule for a complete checker
edge.

In Fig. 4, the last step is simply matching points-to edges. When we reach
emp for M; and Ms, then M is the upper bound. In general, if, in the end,
there are regions we cannot match or weaken in the input graphs, we can obtain
an upper bound by weakening those regions to T in the resulting graph (i.e., a
summary region that cannot be unfolded). This results in an enormous loss in
precision that we would like avoid but can be done if necessary.

Soundness. The basic idea is that we compute an upper bound by rewriting
based on the following derived rule of inference in separation logic:

Mi=M M,=M

For each memory region in the input graphs, either they have the same structure
in the input graphs and we preserve that structure or we weaken to a checker edge
only when we can decide the weakening with C. That is, during the traversal,
we simply alternate between weakening memory regions in each input graph to
make them match and applying the distributivity of separating conjunction over
disjunction to factor out matching regions.
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Termination. We shall use this upper bound operation as our widening operator,
so we check that it has the stabilizing property (i.e., successive iterates eventually
stabilize) to ensure termination of the analysis. Consider an infinite ascending
chain

MyEM EME ---

and the corresponding widening chain
Mo C (Mo M) T (MoVM)VM;) C---

(i.e., the sequence of iterates). The widening chain stabilizes because the suc-
cessive iterates are bounded by the size of M. Over the sequence of iterates,
the only rule that may produce additional edges not present in My is w-aliases,
but its applicability is limited by the number of nodes. Then, nodes are cre-
ated in the result only in two cases: the target node when matching points-to
edges (m-pointsto) and any additional parameter nodes when matching com-
plete checker edges (m-checker). Points-to and complete checker edges are only
created in the resulting graph because of matching, so the number of nodes is
limited by the points-to and complete checker edges in M.

Strategy for applying rules. Unlike the approximation test, the upper bound rules
as described above have a fair amount of non-determinism, and unfortunately,
applying the rules in different orders may yield different results in terms of pre-
cision. To avoid an exponential explosion in computational complexity, we fix a
particular strategy in which to apply the rules, which has been determined, in
part, experimentally. We note, however, that neither soundness nor termination
are affected by the strategy that we choose. Intuitively, we obtain a good result
when we are able to consume all the edges in the input graphs by applying the
upper bound rules. A potential bad interaction between the rules is if we pre-
maturely match (and consume) points-to edges that rather should be weakened
together with other edges. For example, in Fig. 4 before w-aliases, if instead we
match the points-to edges aw@n — [ on the left and d@n +— ¢ on the right (i.e.,
apply m-pointsto) creating the pair (f3,¢), then we will not be able to consume
all edges. Our strategy is to first exhaustively match complete checker edges
(m-checker), as it does not prohibit any other rules and corresponds to identi-
fying the “yet to be explored tail of the structure”. Then, since the weakening
rules (w-aliases and w-partial ) only apply once we have identified corresponding
regions (and that can only be consumed by performing this weakening), we ap-
ply these rules exhaustively when applicable. To identify such regions, we then
apply m-pointsto but incrementally (i.e., we match a points-to edge and restart).
Finally, when nothing else applies, we try weakenings to complete checker edges
(w-checker).

Disjunctions of graphs. In general, we consider widening disjunctions of graphs.
The widening operator for disjunctions is based on the operator for graphs and
attempts to find pairs that can be widened precisely in the sense that no region
need be weakened to T (i.e., because an input region could not be matched). In
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addition to this selective widening process, the widening may leave additional
disjuncts, up to some fixed limit (perhaps based on trace partitioning [MR05]).
More precisely, let us consider two disjunctions of graphs

MyV...VM, and M{V...VvM],

(where we omit the pure formulas for the sake of clarity). Then, the widening
on the two disjunctive states relies on the following algorithm:

— for each disjunct M]{, if there exists an element M; such that the rewriting
rules for the graph widening algorithm for M;v M ]’ does not get stuck, then
add it to the result; if there exists no such element M;, then add M ]’ to the
result;

— for each disjunct M; such that no MiVMJ’» has been added to the result,
then add M; to the result, unless this would cause the generation of more
disjuncts than a fixed constant; in this case, an M]' should be widened
against M; (with unmatched regions weakened to T if necessary).

The termination follows from the termination property of the widening operator
for pairs of graphs and from the bound on the number of disjuncts.

4.3 Extensions and Limitations

The kinds of structures that can be described with our checkers are essentially
trees with regular sharing patterns, which include skip lists, circular lists, doubly-
linked lists, and trees with parent pointers. Intuitively, these are structures where
one can write a recursive traversal that dereferences each field once (plus pointer
equality and disequality constraints). However, the effectiveness of our shape
analysis is not the same for all code using these structures. First, we materialize
only when needed by unfolding inductive definitions, which means that code that
traverse structures in a different direction than the checker are more difficult to
analyze. This issue may be addressed by considering additional materialization
strategies. Second, in our presentation, we consider partial checker edges with one
hole (i.e., a separating implication with one premise). This formulation handles
code that use cursors along a path through the structure but not code that uses
multiple cursors along different branches of a structure.

5 Experimental Evaluation

We evaluate our shape analysis using a prototype implementation for analyz-
ing C code. Our analysis is written in OCaml and uses the CIL infrastruc-
ture [NMRWO02]. We have applied our analysis to a number of small data struc-
ture manipulation benchmarks and a larger Linux device driver benchmark
(scull). In the table, we show the size in pre-processed lines of code, the anal-
ysis times on a 2.16GHz Intel Core Duo with 2GB RAM, the maximum number
of graphs (i.e., number of disjuncts) at any program point, and the maximum
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Table 1. Analysis statistics

Code Analysis Max. Graphs Max. [terations
Size Time at Any Point at Any Point

Benchmark (loc)  (sec) (num) (num)

list reverse 19 0.007 1 3
list remove element 27 0.016 4 6
list insertion sort 56 0.021 4 7
binary search tree find 23 0.010 2 4
skip list rebalance 33 0.087 6 7
scull driver 894 9.710 4 16

number iterations at any program point. In each case, we verified that the data
structure manipulations preserved the structural invariants given by the check-
ers. Because we only fold into checkers based only on history information, we
typically cannot generate the appropriate checker edge when a structure is be-
ing constructed. This issue could be resolved by using constructor functions with
appropriate post-conditions or perhaps a one graph operation that can identify
potential foldings. For these experiments, we use a few annotations that add a
checker edge that say, for example, treat this null as the empty list (1 each in
list insertion sort and skip list rebalance).

The scull driver is from the Linux 2.4 kernel and was used by McPeak and
Necula [MNO05]. The main data structure used by the driver is an array of doubly-
linked lists. Because we also do not yet have support for arrays, we rewrote the
array operations as linked-list operations (and ignored other char arrays). We
analyzed each function individually by providing appropriate pre-conditions and
inlining all calls, as our implementation does not yet support proper interpro-
cedural analysis. One function (cleanup.module) was not completely analyzed
because of an incomplete handling of the array issues; it is not included in the
line count. We also had 6 annotations for adding checker edges in this example.
In all the test cases (including the driver example), the number of graphs we
need to maintain at any program point (i.e., the number of disjuncts) seems to
stay reasonably low.

6 Related Work

Shape analysis. Shape analysis has long been an active area of research with
numerous algorithms proposed and systems developed. Our analysis is closest to
some more recent work on separation logic-based shape analyses by Distefano et
al. [DOY06] and Magill et al. [MNCLOG6]. Their shape analyses infer invariants
for programs that manipulate linked-lists. They summarize linked-list regions
using a notion of list segments (Is), which is an inductively-defined predicate,
that gets unfolded and folded during the course of their analyses. Also like their
analyses, we utilize separation explicitly in our memory abstraction, which allows
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the update operation to affect the memory state in a local manner. The primary
difference is that the list segment abstraction is built into their analyses, while
our analysis is parameterized by inductive checker definitions. To ensure termi-
nation of the analysis, they use a canonicalization operation on list segments
(an operation from a memory state to a memory state), while we use a history-
guided approach to identify where to fold (an operation from two memory states
to one). Note that these approaches are not incompatible with each other, and
they have different trade-offs. The additional history information allowed us to
develop a generic weakening strategy, but because we are history-dependent,
we cannot weaken whenever (e.g., we cannot weaken aggressively after each
update). It might be possible to derive automatically canonicalization rules in
certain situations based on an analysis of checker definitions. If combined with
history-guided weakening, canonicalization would not need to ensure finiteness
and could be less aggressive in its folding. Recently, Berdine et al. [BCCT07]
have developed a shape analysis over generalized doubly-linked lists. They use
a higher-order list segment predicate that is parameterized by the shape of the
“node”, which essentially adds a level of polymorphism to express, for exam-
ple, a linked list of cyclic doubly-linked lists. We can instead describe custom
structures monomorphically with the appropriate checkers, but an extension for
polymorphism could be very useful.

Lee et al. [LYYO05] propose a shape analysis where memory regions are
summarized using grammar-based descriptions that correspond to inductively-
defined predicates in separation logic (like our checkers). A nice aspect of their
analysis is that these descriptions are derived from the construction of the data
structure (for a certain class of tree-like structures). For weakening, they use a
canonicalization operation to fold memory regions into grammar-based descrip-
tions (non-terminals), but to ensure termination of the analysis, they must fix in
advance a bound on the number of nodes that can be in a canonicalized graph.

TVLA [SRW02] is a very powerful and generic system based on three-valued
logic and is probably the most widely applied tool for verifying deep proper-
ties of complex heap manipulations (e.g., [LRS06,LARSWO00]). The framework
is parametric in that users can provide specifications (instrumentation predi-
cates) that affect the kinds of structures tracked by the tool. Our analysis is
instead parameterized by inductive checker definitions, but since we focus on
structural properties, we do not handle any data invariants. Much recent work
has been targeted at improving the scalability of TVLA. Yahav and Rama-
lingam [YRO4] partition the memory state into regions that are either tracked
more precisely or less precisely depending on their relevance to the property in
question. Manevich et al. [MSRF04] describe a strategy to merge memory states
whose canonicalizations are “similar” (i.e., have isomorphic sets of individuals).
Our folding strategy can be seen as being particularly effective when the memory
states are “similar”; like them, we would like to use disjunction when the strat-
egy is ineffective. Arnold [Arn06] identifies an instance where a more aggressive
summarization loses little precision (by allowing summary nodes to represent



Shape Analysis with Structural Invariant Checkers 19

zero-or-more concrete nodes instead of one-or-more). Our abstraction is related
in that our checker edges denote zero-or-more steps.

Hackett and Rugina [HRO5] present a novel shape analysis that first parti-
tions the heap using region inference and then tracks updates on representative
heap cells independently. While their abstraction cannot track certain global
properties like the aforementioned shape analyses, they make this trade-off to
obtain a very scalable shape analysis that can handle singly-linked lists. Recently,
Cherem and Rugina [CR07] have extended this analysis to handle doubly-linked
lists by including the tracking of neighbor cells.

McPeak and Necula [MNO5] identify a class of axioms that can describe
many common data structure invariants and give a complete decision procedure
for this class. Their technique is based on verification-condition generation and
thus requires loop invariant annotations. PALE [MS01] is a similar system also
based on verification-condition generation but instead uses monadic second-order
logic. Weis et al. [WKL ' 06] have extended PALE with non-deterministic field
constraints (and some loop invariant inference), which enables some reasoning
of skip list structures.

Inductive checkers. It comes at no surprise that inductive data structures are
naturally described using inductive definitions (in some form). For inductive data
structures in imperative languages, separation logic enables the specification of
such structures in a particularly concise manner because disjointness is built
into the logic [Rey02]. By restricting our attention to definitions that can be
viewed as code, we impose strictures that are useful for shape analysis. All shape
analyses based on separation logic (e.g., [DOY06,MNCL06]) use inductively-
defined predicates for abstraction that fall into this class. Perry et al. [PTWO06]
have also observed inductive definitions in a substructural logic could be an
effective specification mechanism. They describe shape invariants for dynamic
analysis with linear logic (in the form of logic programs).

7 Conclusion

We have described a lightweight shape analysis based on user-supplied structural
invariant checkers. These checkers, in essence, provide the analysis with user-
specified memory abstractions. Because checkers are only unfolded when the
regions they summarize are manipulated, these specifications allow the user to
focus the efforts of the analysis by enabling it to expose disjunctive memory
states only when needed. The key mechanisms we utilize to develop such a shape
analysis is a generalization of checker-based summaries with partial checker runs
and a folding strategy based on guidance from previous iterates. In this paper,
we have focused on using structural checkers to analyze algorithms that traverse
the structures unidirectionally. We believe such ideas could be applicable more
broadly (both in terms of utilizable checkers and algorithms analyzed).
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A Approximation Test

In this section, we give the rules that define the approximation test as described
in Sect. 4.2. Viewed from goal to premise, each rule either matches and con-
sumes edges (pointsto and checker) or simplifies edges in order for matching to
apply (assume, apply, and unfold) until all edges have been consumed (emp).
Here, to make explicit the updating of the global mapping @, we extend the
approximation test judgment slightly as follows: My T Ms[®;]|[Po] where @
is the input mapping (as in Sect. 4.2) and @¢ is the output mapping (i.e., the
resulting mapping after matching nodes).

M, T M;[®;][9o]

Edge Matching.

M, C Mz[@, To — 7“1][45,} as > a1 €EP
My % (a1@f = 11) © Mz * (a2@f = 12)[P][P']

pointsto

M, C Mg[@,ﬂg — ﬂl][él] oy > €D
My * a1‘c(ﬁ1) C My * ag.c(ﬁg)[gﬁ] [@l]

checker

Partial Checkers.

M * ah.¢(01) C az.c(B2)[®, B2 — B1][P] az - ai,ap > a) €P
M1 E MQ[@l][éN} (ﬁl fresh)

assume
My M{(ar ~ o) C Mo % cvpc() ol e(52) (][]
M{ T ah.o(B2)[8.6s — r s o] @] s an €&
M C Ms[®'][®"] (a fresh)
apply

My % M{(a'l W) S 051.0(51) k— a'l.c(ﬁl) C Ms % ag.c(ﬂg)[é] [@”]
Unfolding.

My T My * [ag, B2/, p|[0/ fv(M)|M;[®][®'] s — o1 €D (8 fresh)
(me(p):=---V(My; P)V---)

M; C My % 052.0(62)[@] [@l}

unfold

Finish.

————emp
emp C emp[®][9]

We write M % M'(a ~» ') for splitting a graph into two sub-graphs: M’
which is the slice from a to o' (all nodes and edges reachable from « but not
from o), and M, which is the remainder. Similarly, M % M’'(a ~) indicates
M’ is the slice from « (all nodes and edges reachable from «).
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The unfold rule enables matching when M; is an unfolded instance of M.
Algorithmically, we want to apply checker to match checker edges before consid-
ering unfolding. In the unfold rule, we write fv(M;) for the free variables of M;.
For the overall approximation test on analysis states, we need to remember the
P; from unfolding to check the approximation relation on the pure constraints,
which is left implicit here.

B Widening

In this section, we give the rewriting rules for the upper bound operation as
described in Sect. 4.2.

U (MiVMa)@® M — W' s (M{VM})® M’

Edge Matching.

<Oz1,0z2> cev

m-pointsto
J/; (Ml b S a1@f — 1V Mo * Oég@f — 7'2) ® M

— W, (r1,m2) § (MaV M) ® M * (a1, az)af — (ri, r2)
(a1, 0) €W

14 H (M1 B S Oél.C(B1)VM2 k 012.0(62)) ® M
— U, (81, 02) § (M1VM2) & M * (a1, az).c({B1, B2))

m-checker

Folding.

(a1, a0) €W M5 C ag.c(B2)[az = as] (B2 fresh)

W3 (My % on.c(B1)V Ma % Mi(az ~)) @ M
— U s (M1VM2) ® M * (a1, a2).c({f1,52))

w-checker

<0517 052>, <O/17 0/2> ev
M3 E as.c(B2) *—ab.c(B2)[aa = az, ah — ab] (B2 fresh)

- ial
W g (M % ar.c(Br) *—af.c(B1)V M % Ms(az ~ ab)) @ M w-partia
— U s (M1V M) ® M * (a1, az).c({B1, B2)) *— (a1, as).c({B1, B2))

(o, a2), (a1, ) €W
M; T az.c(B2) ¥— ab.c(B2)[az = oz, o — ab) (B1, B2 fresh)
W g (M1VMa x Ms(a ~ o)) @ M
— W (M1VM2) ® M * (a1, an).c({B1, B2)) *— (a1, ab).c ({1, B2))

w-aliases
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